18  Referencias

Anderson, E. (1935). The irises of the Gaspe Peninsula. Bulletin of the American Iris Society, 59, 2–5.

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452–454. https://doi.org/10.1038/533452a

Bryan, J. (2018). Happy Git and GitHub for the useR. https://happygitwithr.com/

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304.

Chang, W. (2018). R graphics cookbook (2nd ed.). O’Reilly Media.

Chambers, J. (2008). Software for data analysis: Programming with R (1st ed.). Springer. https://doi.org/10.1007/978-0-387-75936-4

Cleveland, W. S. (1993). Visualizing Data. Hobart Press.

Cui, B. (2023). DataExplorer: Automate data exploration for complete preliminary analysis (versión 0.8.3) [Paquete R]. CRAN. https://CRAN.R-project.org/package=DataExplorer

Field, A. (2013). Discovering statistics using IBM SPSS statistics: and sex and drugs and rock’n’roll (4th ed.). Sage.

Field, A. (2018). Discovering statistics using R. Sage.

Fisher, R. (1936). Iris [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C56C76

Friendly, M. (2008). A brief history of data visualization. In Handbook of Data Visualization (pp. 15–56). Springer. https://doi.org/10.1007/978-3-540-33037-0_2

Gentleman, R., & Temple Lang, D. (2007). Statistical analyses and reproducible research. Journal of Computational and Graphical Statistics, 16(1), 1–23. https://doi.org/10.1198/106186007X178663

Grolemund, G., & Wickham, H. (2017). R for data science. O’Reilly Media. https://r4ds.had.co.nz/

Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press.

Hernández, F., Usuga, O., & Mazo, M. (12 de agosto de 2024). Modelos de regresión con R. Github.io. https://fhernanb.github.io/libro_regresion/

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. https://doi.org/10.1080/10618600.1996.10474713

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). McGraw-Hill, Irwin.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (Vol. 821). John Wiley & Sons.

Moore, D. S., Notz, W. I., & Flinger, M. A. (2017). The basic practice of statistics (8th ed.). W. H. Freeman.

Murrell, P. (2018). R graphics (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429422768

National Academies of Sciences, Engineering, and Medicine. (2019). Reproducibility and replicability in science. National Academies Press. https://doi.org/10.17226/25303

Navarro, D. J. (2019). Learning statistics with R: A tutorial for psychology students and other beginners (versión 0.6). https://learningstatisticswithr.com

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Revelle, W. (2023). psych: Procedures for psychological, psychometric, and personality research (versión 2.3.6) [Paquete R]. CRAN. https://CRAN.R-project.org/package=psych

Rosales Castillo, J. M. (2005). Micropropagación de Calahuala Phlebodium psedoaureum (Cav.) Lellinger con tres tipos de explantes en diferentes medios de cultivo in vitro. Tesis Ing. Agr. Guatemala, Universidad de San Carlos de Guatemala, Facultad de Agronomía.

The Turing Way Community. (2023). The Turing Way: A handbook for reproducible, ethical and collaborative research. https://the-turing-way.netlify.app

Trujillo Sierra, E. (2022). Modelo de Regresión Lineal Múltiple - Salinidad. RStudio Pubs. Recuperado de: https://rstudio-pubs-static.s3.amazonaws.com/940966_d007915418ef41c7874f7316aa972543.html

Tufte, E. (2001). The visual display of quantitative information (2nd ed.). Graphics Press.

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer. https://doi.org/10.1007/978-0-387-21706-2

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://ggplot2.tidyverse.org

Wickham, H., Averick, M., Bryan, J., Chang, W., D’Agostino McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: A grammar of data manipulation (versión 1.1.2) [Paquete R]. CRAN. https://CRAN.R-project.org/package=dplyr

Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. O’Reilly Media. https://r4ds.had.co.nz

Wilkinson, L. (2005). The grammar of graphics (2nd ed.). Springer. https://doi.org/10.1007/0-387-28695-0

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, A. J., & Teal, T. K. (2017). Good enough practices in scientific computing. PLOS Computational Biology, 13(6), e1005510. https://doi.org/10.1371/journal.pcbi.1005510

Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The definitive guide (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781138359444